InFRM (Interagency Flood Risk Management) Neches River Basin Overview

ANRA Steering Committee 11 July 2017

Bret W. Higginbotham, P.E., CFM Fort Worth District Watershed Team Lead

US Army Corps of Engineers BUILDING STRONG_®

Objectives

- Consistent flood risk assessments for entire watersheds within FEMA Region 6
- Utilize various hydrologic analysis techniques
- Examine and account for non-stationary trends
 - Land use changes
 - Climate variability
 - Regulation
- Watershed report
 - 0.2%, 1%, 2%, 4% and 10%
 exceedance probability events
- Modeling tools to easily increase granularity
- Interagency partnership

Methodology

- Statistical hydrology
- Rainfall-runoff modeling
 - Existing conditions
 - Future conditions
 - Ultimate development conditions
- Period of record (POR) simulations
 - Regulated
 - Unregulated watershed conditions
- Reservoir studies
- Stochastic methods in hydrology
- Comparison and convergence of methods

Advantages

- Multi-Agency approach
 - Advanced scientific team
 - Leverage knowledge within each agency
 - Leverage previous flood risk studies
 - Leverage newly developed USACE CWMS models
 - Represents multiple federal agencies working to support FEMA and their flood risk program
 - Complements USACE flood risk programs
- Various hydrologic analysis techniques
- Look at impacts of non-stationary watershed trends on flood risk
- Consistent results across the entire watershed
- Toolset for use in more detailed studies

BUILDING STRONG_®

Products

- Watershed report
- Results from various hydrologic methods
- Recommended results
- Modeling tools which can be used to increase granularity
- Comparison to previous flood risk studies within the watershed

Interagency Flood Risk Management (InFRM) [Draft] Report for the Guadalupe River Basin

Prepared by: U.S. Army Corps of Engineers, Fort Worth District Submitted to: Federal Emergency Management Agency (FEMA) Region VI

Published Date: TBD

General Location

BUILDING STRONG®

Neches River Basin

- 10,129 Square Miles
- 1.2 feet per mile
 Slope from
 Canton to Gulf
- 8 Large Dams

Stream and Reservoir Gages

 20 Stream and Reservoir Gages

Average Annual Precipitation

Ranges from 38 to 54+ inches per year Sam Rayburn 2014 – 49 in 2015 – 68 in 2016 – 61 in

Climate Variability

CWMS Model

- 9,900 square miles
- 46 Subbasins
- 211 square miles (Median)

Existing Model

- Previous USACE HEC-1 Initial-Constant Loss, Snyder's Transform, and Recession Baseflow
- CWMS Neches Model Deficit-Constant Loss with Specified Evapotransipration, Clark/Mod-Clark Transform, Recession Baseflow

BUILDING STRONG_®

Historical Events

Neches River

- ▶ Neches Rv nr Rockland, TX Max 17,200 cfs in 1968
- ► Town Bluff Reservoir Max Elev 85.21 in May 1953
- ▶ Neches Rv nr Town Bluff, TX Max 20,500 cfs in 1995
- ▶ Neches Rv Saltwater Barrier Max 21,500 cfs in 2015

Historical Events

Angelina River

- ► Angelina Rv nr Alto, TX Max 5,450 cfs in 1969
- ► Sam Rayburn Reservoir Max Elev 173.75 in June 2015

Neches River Basin Project Schedule

	Task / Months	0-3	3-6	6-9	9-12	12-15	15-18	18-21	21-24	24-27	27-30	30-33	33-36	36-39
0	Data Collection													
1	Statistical Hydrology													
2	HEC-HMS Modeling													
3	Riverware Modeling													
4	Reservoir Studies													
5	Flow Recommendations													
6	Documentation													
7	QC Reviews													
8	Project Management													

- April 2017 Kickoff Meeting
- Next Step Data Collection
- Study Completion April 2020

QUESTIONS?

US Army Corps of Engineers BUILDING STRONG_®